close

過去20年,植物的多酚類成分,由於對健康的效益因此被許多人關注。莓果類富含營養和非營養性成分,包括維他命、膳食纖維和礦物質,以及非營養性的多酚物質[1]。多項研究已證明攝取莓果對多種慢性退化疾病都有正面幫助[1-5]

 

草莓(genus: Fragaria)屬於薔薇科(Rosaceae)。草莓的健康效益來自於它那令人驚豔的多酚含量,例如:黃酮類,以及微量營養素(micronutrients),像是葉酸、維他命C和礦物質[6-7]。草莓含多種營養素,是地中海飲食中常見且重要的水果[8]。草莓各營養的含量會因多種環境和品種因素而有差異[9]。草莓在多個體

外和活體研究顯示,含有的活性物可影響生理活性,似乎能避免多樣的慢性退化型症狀[4-5]

 

草莓多酚,例如:花青素苷和鞣花單寧,在血液中並不易被利用,但能透過腸道菌群代謝生成其它酚類成分,改善吸收效率[6]。因此,探討這些代謝物的生理特性有其必要,因為草莓多酚對人體的益處和這些菌群的代謝產物有關。

 

草莓的活性成分

 

草莓可視為是機能性水果,因它富含多種植化素、纖維和營養成分[4-6, 10-11]。由於草莓富含維他命C和葉酸,所以草莓是我們補充維他命的重要來源[12],維持身體健康。此外,對於其它維他命、礦物質[13]和多酚類,草莓也是理想選擇。草莓中最有名的多酚類成分是花青素苷。各種草莓品種中,超過25種花青素苷曾被發現,Pelargonidin-3-glucoside 是最普遍的[14-15]。花青素苷和其它2類,黃烷醇類(flavanols)包含兒茶素和原花青素分子、鞣花單寧類(例如:sanguiin-H-6)成分是草莓中含量最豐富的多酚類物質,且都帶有優異抗氧化力[6, 16-17]。同時也含其它相對較少的多酚類,例如:黃酮醇類(kaempferol-3-malonylglucoside 和槲皮素)、酚酸(對羥基苯甲酸和咖啡酸衍生物)[6-7, 18]

 

影響草莓成分組成的因素

 

收成前後的情況都會影響草莓植化素、抗氧化物和營養組成[9]。品種和基因差異是決定草莓營養品質的重要因子,透過現代生物科技和育種策略能調控活性物含量,追求更理想的營養組成。多酚含量和抗氧化力的相關性會因草莓基因型不同而有差異[12,19-21]。最近,有市場上的草莓使用野生種原育種(wild germplasm breeding programs),改善抗氧化物含量[22-24]

 

草莓的植化物和抗氧化物活性會受氣候、品種、採收時間和栽種方式影響[25-27]。有機草莓有較高的花青素苷、總多酚和維他命C含量[28]。草莓多酚含量也會因成熟度和採收期不同而不一樣。Lopes da Silva et al.發現同種草莓會因為成熟度、土壤、氣候和儲存條件等因素而強烈影響花青素苷濃度[29]。Tulipani and co-workers研究4種草莓3階段成熟度的變化:所有品種的綠色草莓多酚含量比粉紅色和紅色時多[30]。一些研究指出,草莓的多酚和抗氧化物濃度可能會因保存環境而發生變化[31-33],例如:在4℃冰箱保存3天,葉酸成分有較高安定性[34]

[媽咪愛] 義美生機 - 真甘純草莓使用冷凍真空乾燥技術.保留營養及風味/ 非油炸、無加糖、零添加,天然食材,含有膳食纖維及多種礦物質,吃得營養又健康。

https://dreamstore.info/301fJ

義美草莓.jpg

[momo] 幸美生技 - 原裝進口鮮凍草莓5公斤裝/ IQF急速冷凍技術,非冷藏庫存,置放常溫3分鐘後可即食、搭沙拉。

https://whitehippo.net/305oU

草莓有哪些營養成分?

[momo] 義美 - 果粒醬300g(草莓/藍莓)/ 單純好味道,越簡單越安心,不添加防腐劑、人工色素、香料。

https://whitehippo.net/305pw

草莓2.jpg

 

草莓多酚的生物利用率和代謝

 

就營養學觀點,生物利用率(bioavailability)是食物裡營養經正常生理路徑吸收、保留並發揮生理功能的部分比率。近期研究,因需解釋草莓對健康的幫助和預防疾病功能,所以關於草莓多酚經吸收、代謝和排泄的評估探討變得非常重要[6-7, 35]

 

然而,草莓多酚在目前所知的吸收和代謝知識,仍有許多關鍵處未完全釐清。直至2016年,只有5篇研究是使用人體模型探討草莓花青素苷的生物利用率[36]。攝取200公克的草莓(內含179 μmol of pelargonidin-3-glucoside),在尿液中可檢測到pelargonidin的代謝物,含量佔所有花青素類代謝物80%以上[37],不過花青素類代謝物非常不安定,特別是在冷凍環境會加速降解[37]。攝取200公克的草莓(含約222 μmol of pelargonidin-3-O-glucoside, 13 μmol of pelargonidin-3-O-rutinoside, and 6 μmol of cyanidin-3-O-glucoside)檢測血液內濃度,主要代謝物為pelargonidin-O-glucuronide,最高濃度Cmax of 274 ±24 nmol/L ,發生在時間Tmax 1.1 ± 0.4 h,推測可能是經由小腸吸收[38]。所有在血液發現的花青素苷代謝物,也會在尿液發現,另也包含少量的pelargonidin-O-sulfate 和 pelargonidin aglycone 代謝物[38]。此外,在另一交叉設計的試驗,草莓花青素苷的攝取量和排泄量有正向相關性[39-40]。食用100-400g的草莓泥(含15 μmol, 30 μmol, 和60 μmol花青素苷成分),顯示pelargonidin在人體內有不低的生物利用率[39]。自願者攝取100-400g新鮮草莓(含pelargonidin-3-rutinoside, cyanidin-3-glucoside, and

pelargonidin-3-glucoside成分),然後在8-24間每隔2小時檢測尿液中花青素苷含量,結果發現,pelargonidin sulfate 和 glucuronide 是主要的代謝物[40]。2010年,Azzini et al對13名自願者研究草莓活性物的生物利用性。實驗指示自願者在不同時間分別食用300g的生鮮草莓和存放一段時間後的草莓,結果顯示,(1)食用這2種草莓後,血液中維他命C濃度顯著升高。(2) 血液裡α-carotene濃度增加幅度,生鮮草莓比較高。(3)血液內檢測出花青素苷。在這同時,食用8小時後,coumaric, protocatechuic 和 4-hydroxybenzoic acid也會在血液分析到[41]。另外,攝取2小時後,尿液中開始有pelargonidin glucuronide, glucoside, and aglycone的訊號,24小時後的訊號量約是食用量0.9% [41]

 

鞣花單寧是草莓內第二多的多酚成分,但到2016年只有2篇關於鞣花單寧代謝的人體研究[42]。一篇是將40位健康的人分成4組,分別食用4種含鞣花單寧的食物(草莓,250 g;紅覆盆子,225 g;胡桃,35 g;紅酒,300 mL),結果沒有任何一組的尿液含有鞣花酸或鞣花單寧,但每一組都含有微生物代謝物3,8-dihydroxy-6H-dibenzo[b,d]pyran-6-one (urolithin A),攝取草莓的組別平均有2.8 ± 4.4 %的排泄量[43]。另篇研究,Truchado et al.發現加工過的草莓在體內的微生物代謝反應,和生鮮草莓的情況沒有太大差別。尿液中的鞣花酸濃度增加了2.5倍,可是這和微生物代謝反應無關。所有的20位受測者都有代謝物urolithin A,但只有3位有urolithin B[44]

 

草莓也富含酚酸,一項試驗性的研究(pilot study),4位自願者食用750g草莓,5小時內在尿液中檢測出26-27%的苯甲酸、游離型(protocatechuic, p-hydroxybenzoic, and gentisic acid)和共軛苯甲酸衍生物(syringic acid)。血液中未檢測出肉桂酸(Cinnamic acids),在尿液中也只有微量[45]。酚酸的代謝和排泄取決於腸道內微生物,因為酚酸會在腸胃內先行吸收[45]

[媽咪愛] 義美生機 - 真甘純草莓使用冷凍真空乾燥技術.保留營養及風味/ 非油炸、無加糖、零添加,天然食材,含有膳食纖維及多種礦物質,吃得營養又健康。https://dreamstore.info/301fJ

[momo] 幸美生技 - 原裝進口鮮凍草莓5公斤裝/ IQF急速冷凍技術,非冷藏庫存,置放常溫3分鐘後可即食、搭沙拉。 https://whitehippo.net/305oU

[momo] 義美 - 果粒醬300g(草莓/藍莓)/ 單純好味道,越簡單越安心,不添加防腐劑、人工色素、香料。 https://whitehippo.net/305pw

參考文獻:

1.Nile, S. H.; Park, S. W. Edible berries: Bioactive components and their effect on human health. Nutrition 2014, 30, 134−144.

2.Basu, A.; Rhone, M.; Lyons, T. J. Berries: emerging impact on cardiovascular health. Nutr. Rev. 2010, 68, 168−177.

3.Basu, A.; Lyons, T. J. Strawberries, blueberries, and cranberries in the metabolic syndrome: clinical perspectives. J. Agric. Food Chem. 2012, 60, 5687−5692.

4.Forbes-Hernandez, T. Y.; Gasparrini, M.; Afrin, S.; Bompadre, S.; Mezzetti, B.; Quiles, J. L.; Giampieri, F.; Battino, M. The healthy effects of strawberry polyphenols: which strategy behind antioxidant capacity? Crit. Rev. Food Sci. Nutr. 2015, 0:1−14.

5.Giampieri, F.; Forbes-Hernandez, T. Y.; Gasparrini, M.; Alvarez- Suarez, J. M.; Afrin, S.; Bompadre, S.; Quiles, J. L.; Mezzetti, B.; Battino, M. Strawberry as a health promoter: an evidence based review. Food Funct. 2015, 6, 1386−1398.

6.Giampieri, F.; Tulipani, S.; Alvarez-Suarez, J. M.; Quiles, J. L.; Mezzetti, B.; Battino, M. The strawberry: composition, nutritional quality, and impact on human health. Nutrition 2012, 28, 9−19.

7.Giampieri, F.; Alvarez-Suarez, J. M.; Battino, M. Strawberry and human health: Effects beyond antioxidant activity. J. Agric. Food Chem. 2014, 62, 3867−3876.

8.Tulipani, S.; Mezzetti, B.; Battino, M. Impact of strawberries on human health: insight into marginally discussed bioactive compounds for the Mediterranean diet. Public Health Nutr. 2009, 12, 1656−1662.

9.Alvarez-Suarez, J. M.; Mazzoni, L.; Forbes-Hernandez, T. Y.; Gasparrini, M.; Sabbadini, S.; Giampieri, F. The effects of pre-harvest and post-harvest factors on the nutritional quality of strawberry fruits: A review. J. Berry Res. 2014, 4, 1−10.

10.Basu, A.; Nguyen, A.; Betts, N. M.; Lyons, T. J. Strawberry as a functional food: an evidence-based review. Crit. Rev. Food Sci. Nutr. 2014, 54, 790−806.

11.Battino, M.; Beekwilder, J.; Denoyes-Rothan, B.; Laimer, M.; McDougall, G. J.; Mezzetti, B. Bioactive compounds in berries relevant to human health. Nutr. Rev. 2009, 67, S145−S150.

12.Scalzo, J.; Politi, A.; Pellegrini, N.; Mezzetti, B.; Battino, M. Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutrition 2005, 21, 207−213.

13.USDA. Agricultural Research Service, Nutrient Data Laboratory. USDA National Nutrient Database for Standard Reference, Release 28. Version Current: September 2015. Internet: http://www.ars.usda.gov/ nea/bhnrc/ndl. 2015.

14.Lopes-da-Silva, F. t.; de Pascual-Teresa, S.; Rivas-Gonzalo, J. n.; Santos-Buelga, C. Identification of anthocyanin pigments in strawberry (cv Camarosa) by LC using DAD and ESI-MS detection. Eur. Food Res. Technol. 2002, 214, 248−253.

15.Bridle, P.; GarcÃa-Viguera, C. Analysis of anthocyanins in strawberries and elderberries. A comparison of capillary zone electrophoresis and HPLC. Food Chem. 1997, 59, 299−304.

16.Buendía, B. a.; Gil, M. a. I.; Tudela, J. A.; Gady, A. L.; Medina, J. J.; Soria, C.; López, J. M.; Tomás-Barberán, F. A. HPLC-MS analysis of proanthocyanidin oligomers and other phenolics in 15 strawberry cultivars. J. Agric. Food Chem. 2010, 58, 3916−3926.

17.Aaby, K.; Ekeberg, D.; Skrede, G. Characterization of phenolic compounds in strawberry (Fragaria× ananassa) fruits by different HPLC detectors and contribution of individual compounds to total antioxidant capacity. J. Agric. Food Chem. 2007, 55, 4395−4406.

18.Giampieri, F.; Alvarez-Suarez, J. M.; Mazzoni, L.; Romandini, S.; Bompadre, S.; Diamanti, J.; Capocasa, F.; Mezzetti, B.; Quiles, J. L.; Ferreiro, M. S. The potential impact of strawberry on human health. Nat. Prod. Res. 2013, 27, 448−455.

19.Tulipani, S.; Mezzetti, B.; Capocasa, F.; Bompadre, S.; Beekwilder, J.; De Vos, C. H. R.; Capanoglu, E.; Bovy, A.; Battino, M. Antioxidants, phenolic compounds, and nutritional quality of different strawberry genotypes. J. Agric. Food Chem. 2008, 56, 696− 704.

20.Gündüz, K.; Özdemir, E. The effects of genotype and growing conditions on antioxidant capacity, phenolic compounds, organic acid and individual sugars of strawberry. Food Chem. 2014, 155, 298−303.

21.Capocasa, F.; Scalzo, J.; Mezzetti, B.; Battino, M. Combining quality and antioxidant attributes in the strawberry: The role of genotype. Food Chem. 2008, 111, 872−878.

22.Diamanti, J.; Capocasa, F.; Balducci, F.; Battino, M.; Hancock, J.; Mezzetti, B. Increasing strawberry fruit sensorial and nutritional quality using wild and cultivated germplasm. PLoS One 2012, 7, e46470.

23.Diamanti, J.; Capocasa, F.; Battino, M.; Mezzetti, B. Evaluation of F. x ananassa intra-specific and inter-specific back-crosses to generate new genetic material with increased fruit nutritional quality. J. Berry Res. 2010, 1, 103−114.

24.Fredericks, C. H.; Fanning, K. J.; Gidley, M. J.; Netzel, G.; Zabaras, D.; Herrington, M.; Netzel, M. High-anthocyanin strawberries through cultivar selection. J. Sci. Food Agric. 2013, 93, 846−852.

25.Wang, S. Y.; Millner, P. Effect of different cultural systems on antioxidant capacity, phenolic content, and fruit quality of strawberries (Fragaria × aranassa Duch.). J. Agric. Food Chem. 2009, 57, 9651− 9657.

26.Kim, Y.-J.; Shin, Y. Antioxidant profile, antioxidant activity, and physicochemical characteristics of strawberries from different cultivars and harvest locations. Han'guk Eungyong Sangmyong Hwahakhoeji 2015, 58, 587−595.

27.Reganold, J. P.; Andrews, P. K.; Reeve, J. R.; Carpenter-Boggs, L.; Schadt, C. W.; Alldredge, J. R.; Ross, C. F.; Davies, N. M.; Zhou, J. Fruit and soil quality of organic and conventional strawberry agroecosystems. PLoS One 2010, 5, e12346.

28.Crecente-Campo, J.; Nunes-Damaceno, M.; Romero-Rodriguez, M. A.; Vázquez-Odériz, M. L. Color, anthocyanin pigment, ascorbic acid and total phenolic compound determination in organic versus conventional strawberries (Fragaria × ananassa Duch, cv Selva). J. Food Compos. Anal. 2012, 28, 23−30.

29.Lópes-da-Silva, F.; Escribano-Bailó, M. T.; Alonso, J. J. P.; Rivas- Gonzalo, J. C.; Santos-Buelga, C. Anthocyanin pigments in strawberry. LWT-Food Sci. Technol. 2007, 40, 374−382.

30.Tulipani, S.; Marzban, G.; Herndl, A.; Laimer, M.; Mezzetti, B.; Battino, M. Influence of environmental and genetic factors on healthrelated compounds in strawberry. Food Chem. 2011, 124, 906−913.

31.Jin, P.; Wang, S. Y.; Wang, C. Y.; Zheng, Y. Effect of cultural system and storage temperature on antioxidant capacity and phenolic compounds in strawberries. Food Chem. 2011, 124, 262−270.

32.Olsson, M. E.; Ekvall, J.; Gustavsson, K.-E.; Nilsson, J.; Pillai, D.; Sjöholm, I.; Svensson, U.; Åkesson, B.; Nyman, M. G. L. Antioxidants, low molecular weight carbohydrates, and total antioxidant capacity in strawberries (Fragaria× ananassa): effects of cultivar, ripening, and storage. J. Agric. Food Chem. 2004, 52, 2490−2498.

33.Ayala-Zavala, J. F.; Wang, S. Y.; Wang, C. Y.; González-Aguilar, G. A. Effect of storage temperatures on antioxidant capacity and aroma compounds in strawberry fruit. LWT-Food Sci. Technol. 2004, 37, 687− 695.

34.Tulipani, S.; Romandini, S.; Battino, M.; Bompadre, S.; Capocasa, F.; Mezzetti, B. Variation in strawberry micronutrients, phytochemical and antioxidant profiles: the combined effect of genotype and storage. Acta Hortic. 2009, 842, 867−872.

35.Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J. P. E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly) phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signaling 2013, 18, 1818−1892.

36.Fang, J. Bioavailability of anthocyanins. Drug Metab. Rev. 2014, 46, 508−520.

37.Felgines, C.; Talavéra, S.; Gonthier, M.-P.; Texier, O.; Scalbert, A.; Lamaison, J.-L.; Rémésy, C. Strawberry anthocyanins are recovered in urine as glucuro-and sulfoconjugates in humans. J. Nutr. 2003, 133, 1296−1301.

38.Mullen, W.; Edwards, C. A.; Serafini, M.; Crozier, A. Bioavailability of pelargonidin-3-O-glucoside and its metabolites in humans following the ingestion of strawberries with and without cream. J. Agric. Food Chem. 2008, 56, 713−719.

39.Carkeet, C.; Clevidence, B. A.; Novotny, J. A. Anthocyanin excretion by humans increases linearly with increasing strawberry dose. J. Nutr. 2008, 138, 897−902.

40.Hollands, W.; Brett, G. M.; Dainty, J. R.; Teucher, B.; Kroon, P. A. Urinary excretion of strawberry anthocyanins is dose dependent for physiological oral doses of fresh fruit. Mol. Nutr. Food Res. 2008, 52, 1097−1105.

41.Azzini, E.; Vitaglione, P.; Intorre, F.; Napolitano, A.; Durazzo, A.; Foddai, M. S.; Fumagalli, A.; Catasta, G.; Rossi, L.; Venneria, E. Bioavailability of strawberryantioxidants in human subjects. Br. J. Nutr. 2010, 104, 1165−1173.

42.Espín, J. C.; Larrosa, M.; GarcÃa-Conesa, M. T.; Tomás- Barberán, F. Biological significance of urolithins, the gut microbial ellagic acid-derived metabolites: the evidence so far. Evidence-Based Complementary and Alternative Medicine 2013, 2013, 270418.

43.Cerdá, B.; Tomás-Barberán, F. A.; Espín, J. C. Metabolism of antioxidant and chemopreventive ellagitannins from strawberries, raspberries, walnuts, and oak-aged wine in humans: identification of biomarkers and individual variability. J. Agric. Food Chem. 2005, 53, 227−235.

44.Truchado, P.; Larrosa, M.; García-Conesa, M. T.; Cerdá, B. a.; Vidal-Guevara, M. L.; Tomás-Barberán, F. A.; Espín, J. C. Strawberry processing does not affect the production and urinary excretion of urolithins, ellagic acid metabolites, in humans. J. Agric. Food Chem. 2012, 60, 5749−5754.

45.Russell, W. R.; Scobbie, L.; Labat, A.; Duthie, G. G. Selective bio-availability of phenolic acids from Scottish strawberries. Mol. Nutr. Food Res. 2009, 53, S85−S91.

Afrin, S., Gasparrini, M., Forbes-Hernandez, T. Y., Reboredo-Rodriguez, P., Mezzetti, B., Varela-López, A., ... & Battino, M. (2016). Promising health benefits of the strawberry: a focus on clinical studies. Journal of agricultural and food chemistry, 64(22), 4435-4449.

 

 

arrow
arrow
    全站熱搜

    cofactor412 發表在 痞客邦 留言(0) 人氣()