大西洋雪松(Cedarwood Atlas,Cedrus atlantica)
松科(Pinaceae)雪松屬(Cedrus)
學名:Cedrus atlantica
別名:北非雪松
圖:大西洋雪松(Cedrus atlantica) [1]
曾在約1840年時因造林引入歐洲和美國,原生於阿爾及利亞、摩洛哥里夫(Rif)山脈和阿特拉斯(Atlas)山脈海拔1500-2600m處,北摩洛哥的中阿特拉斯山區佔有全球80%大西洋雪松[1-3]。
【生理活性】
摩洛哥大西洋雪松地上部分水蒸餾精油的產率1.12%,成分有α-喜馬雪松烯(α-himachalene,35.34%)、β-喜馬雪松烯(β-himachalene,13.62%)、γ-喜馬雪松烯(γ-himachalene,12.6%)、雪松醇(cedrol,10.32%)、isocedranol (5.52%)和α-蒎烯(α-pinene,5.5%)[1]。
α-喜馬雪松烯是沒有味道的,摩洛哥大西洋雪松木材水蒸餾精油的香氣主要是由微量的4-乙醯-1-甲基環己烯(4-acetyl-1-methylcyclohexene)和vestitenone所構成,再加上其他次要的香氣分子,例如:對甲酚(para-cresol)、2-十一酮(undecan-2-one)和4-甲基苯乙酮(4-methylacetophenone),以及一些未知的成分融合成最後氣味[4]。
針葉水蒸餾精油含有α-蒎烯(14.85%)和σ-喜馬雪松烯(7.62%)是辨認摩洛哥境內大西洋雪松的指紋成分[2、5]。其他成分還有β-喜馬雪松烯(9.89%)、順式-α-大西洋酮(cis-α-atlantone,6.78%)、喜馬拉雅杉醇(himachalol,5.26%)、大根香葉烯 D (germacrene D,3.52%)和β-異蘭烯(β-copaene,2.26%) [5]。
阿爾及利亞的種子精油含α-蒎烯(5.5-37.1%)、β-蒎烯(β-pinene,1.9-8.6%)、香葉烯(myrcene,0.6-3.6%)、 檸烯(limonene,0.6-2.5%)、乙酸龍腦酯(bornyl acetate,4.0-5.4%)、(E)-β-金合歡烯 ((E)-β-farnesene,1.9-6.8%)和淚杉醇(manool,8.3-20.7%) [6]。松果精油有81.49%的α-蒎烯[7]。
摩洛哥無翅和有翅種子精油萃取率分別為3.6%和2.6%,無翅種子有α-蒎烯(46.16 %)、淚杉醇(25.47 %)、乙酸龍腦酯(10.18%)、β-蒎烯(5.95%)。有翅種子精油含淚杉醇(49.02 %)、α-蒎烯(40.82%)、6-comphenol (2.52%)、β-蒎烯(2.13%) [8]。不過2種精油的抗菌力都不理想,只有在1%濃度時能抑制大腸桿菌。
抗癌
血癌起因於異常的造血細胞大量增生,以致於無法分化(differentiation)正常血球,喪失既有功能,導致病變。大西洋雪松木材精油能抑制慢性骨髓血癌細胞K562生長並誘使造血細胞分化形成紅血球(erythroid),濃度59.76±2.6 μg/mL時能抑制50% K562細胞,10 μg/mL可分化12%紅血球[9]。
抗菌
摩洛哥針葉水蒸餾精油可抑制大腸桿菌、金黃色葡萄球菌、綠膿桿菌(Pseudomonas aeruginosa)、中間葡萄球菌(Staphylococcus intermedius) [5]。阿爾及利亞的大西洋雪松松果精油和乙酸乙酯萃取物對金黃色葡萄球菌的抑制效果最好,最小抑菌濃度分別為0.25%和62.5 µg/mL,精油抑制乳癌細胞MCF-7生長的IC50值為143.13±14.6 µg/mL[7]。木材精油抑制糞腸球菌(Enterococcus faecalis)的最小抑菌濃度是0.5% (v/v)[10]。
摩洛哥木屑水蒸餾精油產率9.19%,可抑制大腸桿菌、枯草桿菌(Bacillus subtilis)和仙人掌桿菌(Bacillus cereus),最小抑菌濃度分別是0.4、0.2和0.4μl/ml,但對沙門氏桿菌和金黃色葡萄球菌效果差[11]。使用的精油組成有α-(E)-大西洋酮(α-(E)-atlantone,19.3 %)、β-喜馬雪松烯(15.1%)、8-雪松烯-13-醇(8-cedren-13-ol,13.1 %)、α-喜馬雪松烯(5.1%)。
摩洛哥大西洋雪松水蒸餾精油250 ppm時能抑制43-45%的灰葡萄孢菌(Botrytis cinerea)、綠黴菌(Penicillium digitatum)、柑橘酸腐病菌(Geotrichum citri-aurantii)、柑橘疫病菌(Phytophthora citrophthora)放射狀生長[12]。使用的精油組成有α-蒎烯(34.1%)、β-蒎烯 (31.7%)、香葉烯(17.2%)和檸烯(5.1%)。
殺螺、殺蟲
截形小泡螺(Bulinus truncatus)暴露於摩洛哥大西洋雪松針葉水蒸餾精油0.69 ppm濃度24小時,可使90%截形小泡螺致死,致死原因來自精油成分中的α-蒎烯(34.1%)、β-蒎烯 (31.7%)、香葉烯(17.2%) [13]。摩洛哥大西洋雪松地上部分水蒸餾精油可殺尖音家蚊(Culex pipiens)幼蟲[1],1500 ppm濃度在24hr內殺死100% (20隻) 尖音家蚊幼蟲。
抗過敏
奈米脂質載體(nanostructured lipid carriers,NLCs)複合7.23%或14%雪松醇的粒子,和因被過敏原刺激而釋放組織胺的肥大細胞共同培養時,可顯著降低釋放組織胺量[14]。有別於傳統用藥—普賴蘇濃(Prednisolone)和cromolyn sodium,14%雪松醇奈米粒子表現最高的安全性和最佳抑制組織胺功效(99.2),7.23%雪松醇奈米粒子次之(64.1),之後依序是雪松醇(25.2) >普賴蘇濃(8.6) >cromolyn sodium (8.5) >大西洋雪松精油(7.9),精油在72.00 μg/mL時能抑制50%組織胺釋放。
小鼠在誘發過敏性死亡前1、16或24小時分別口服不同劑量的雪松醇奈米粒子、雪松醇、普賴蘇濃和cromolyn sodium[14],結果當口服時機越接近誘發當下時,存活時間越長;雪松醇濃度越高,預防效果越好;雪松醇奈米粒子療效優於雪松醇,以及普賴蘇濃和cromolyn sodium。雪松醇較差的生物可利用性(bioavailability)源於它的極低水溶性(21.88 mg/L),奈米脂質載體可改善生物可利用率、藥物穩定性、延長藥效。
【芳療功效】
揮發的雪松醇(14.2±1.7 mg/L;64.0±7.7 x10-9 M)以等量(2.0 L/min)給予自願者吸嗅10分鐘[15],結果受試者的收縮壓和舒張壓都明顯降低,進一步實驗證明雪松醇是透過下呼吸道直接作用於支氣管肺的神經受體,不經過血液循環。
壓力反射(baroreflex)的敏感度越高,越能緩衝異常血壓,維持穩定。實驗也發現海馬迴血流量上升[16],海馬迴和邊緣系統似乎能調控壓力反射[16-19],因此推測雪松醇提高海馬迴血流量,使壓力反射敏感度增加,有助於血壓緩衝和穩定。
細胞外基質(extracellular matrix)是維持皮膚彈性和膚質的成分,包含多型的膠原蛋白和彈力纖維,它的降解或減少是皮膚老化、形成皺紋的原因之一。細胞外基質主要由皮膚纖維母細胞產生,實驗發現,雪松醇能活化纖維母細胞,透過MAPK(mitogen-activated protein kinase)訊息路徑,刺激產生第一型膠原蛋白和彈力蛋白[20]。
手術後24小時,小鼠身處大西洋雪松精油2.4 μl/L濃度的環境中持續1、5、30或60分鐘,結果30分鐘和60分鐘的組別皆能顯著減少疼痛感,效果可持續2小時[21]。使用的精油含β-喜馬雪松烯(46.4%)、α-喜馬雪松烯(16.6%)和γ-喜馬雪松烯(10.4%)。
參考資料:
(1)ZOUBI, Y. E., Fouad, E. L., FARAH, A., TAGHZOUTI, K., & LALAMI, A. E. O. (2017). Chemical composition and larvicidal activity of Moroccan Atlas Cedar (Cedrus atlantica Manetti) against Culex pipiens (Diptera: Culicidae). Journal of Applied Pharmaceutical Science, 7(07), 030-034.
(2)Saab, A. M., Gambari, R., Sacchetti, G., Guerrini, A., Lampronti, I., Tacchini, M., ... & Efferth, T. (2018). Phytochemical and pharmacological properties of essential oils from Cedrus species. Natural product research, 32(12), 1415-1427.
(3)Ramadass, M., & Thiagarajan, P. (2015). Importance and Applications of Cedar oil. Research Journal of Pharmacy and Technology, 8(12), 1714-1718.
(4)Uehara, A., Tommis, B., Belhassen, E., Satrani, B., Ghanmi, M., & Baldovini, N. (2017). Odor-active constituents of Cedrus atlantica wood essential oil. Phytochemistry, 144, 208-215.
(5)Derwich, E., Benziane, Z., & Boukir, A. (2010). Chemical composition and in vitro antibacterial activity of the essential oil of Cedrus atlantica. Int. J. Agric. Biol, 12(3), 381-385.
(6)Boudarene, L., Baaliouamer, A., Meklati, B. Y., & Scharff, C. (2004). Composition of the seed oils from Algerian Cedrus atlantica G. Manetti. Journal of Essential Oil Research, 16(1), 61-63.
(7)Belkacem, N., Khettal, B., Hudaib, M., Bustanji, Y., Abu-Irmaileh, B., & Amrine, C. S. M. (2021). Antioxidant, antibacterial, and cytotoxic activities of Cedrus atlantica organic extracts and essential oil. European Journal of Integrative Medicine, 42, 101292.
(8)Rhafouri, R., Strani, B., Zair, T., Ghanmi, M., Aafi, A., El Omari, M., & Bentayeb, A. (2014). Chemical composition, antibacterial and antifungal activities of the Cedrus atlantica (Endl.) Manettiex Carrière seeds essential oil. Mediterranean Journal of Chemistry, 3(5), 1034-1043.
(9)Saab, A. M., Lampronti, I., Borgatti, M., Finotti, A., Harb, F., Safi, S., & Gambari, R. (2012). In vitro evaluation of the anti-proliferative activities of the wood essential oils of three Cedrus species against K562 human chronic myelogenous leukaemia cells. Natural product research, 26(23), 2227-2231.
(10)Hammer, K. A., Carson, C. F., & Riley, T. V. (1999). Antimicrobial activity of essential oils and other plant extracts. Journal of applied microbiology, 86(6), 985-990.
(11)Zrira, S., & Ghanmi, M. (2016). Chemical composition and antibacterial activity of the essential of Cedrus atlantica (Cedarwood oil). Journal of Essential Oil Bearing Plants, 19(5), 1267-1272.
(12)Bouchra, C., Mohamed, A., Mina, I. H., & Hmamouchi, M. (2003). Antifungal activity of essential oils from several medicinal plants against four postharvest citrus pathogens. Phytopathologia Mediterranea, 42(3), 251-256.
(13)Lahlou, M. (2003). Composition and molluscicidal properties of essential oils of five Moroccan Pinaceae. Pharmaceutical biology, 41(3), 207-210.
(14)Chakraborty, S., Kar, N., Kumari, L., De, A., & Bera, T. (2017). Inhibitory effect of a new orally active cedrol-loaded nanostructured lipid carrier on compound 48/80-induced mast cell degranulation and anaphylactic shock in mice. International journal of nanomedicine, 12, 4849.
(15)Umeno, K., Hori, E., Tsubota, M., Shojaku, H., Miwa, T., Nagashima, Y., ... & Nishijo, H. (2008). Effects of direct cedrol inhalation into the lower airway on autonomic nervous activity in totally laryngectomized subjects. British journal of clinical pharmacology, 65(2), 188-196.
(16)Hori, E., Shojaku, H., Watanabe, N., Kawasaki, Y., Suzuki, M., De Araujo, M. F., ... & Nishijo, H. (2012). Effects of direct cedrol inhalation into the lower airway on brain hemodynamics in totally laryngectomized subjects. Autonomic Neuroscience, 168(1-2), 88-92.
(17)Hoff, E. C., Kell Jr, J. F., & Carroll JR, M. N. (1963). Effects of cortical stimulation and lesions on cardiovascular function. Physiological reviews, 43(1), 68-114.
(18)Miyajima, E. I. J. I., & Bunag, R. D. (1985). Anterior hypothalamic lesions impair reflex bradycardia selectively in rats. American Journal of Physiology-Heart and Circulatory Physiology, 248(6), H937-H944.
(19)Verberne, A. J., Lewis, S. J., Worland, P. J., Beart, P. M., Jarrott, B., Christie, M. J., & Louis, W. J. (1987). Medial prefrontal cortical lesions modulate baroreflex sensitivity in the rat. Brain research, 426(2), 243-249.
(20)Jin, M. H., Park, S. G., Hwang, Y. L., Lee, M. H., Jeong, N. J., Roh, S. S., ... & Lee, J. H. (2012). Cedrol enhances extracellular matrix production in dermal fibroblasts in a MAPK-dependent manner. Annals of dermatology, 24(1), 16.
(21)Martins, D. F., Emer, A. A., Batisti, A. P., Donatello, N., Carlesso, M. G., Mazzardo-Martins, L., ... & dos Santos, A. R. S. (2015). Inhalation of Cedrus atlantica essential oil alleviates pain behavior through activation of descending pain modulation pathways in a mouse model of postoperative pain. Journal of ethnopharmacology, 175, 30-38.
留言列表